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CatSIM: A Categorical Image Similarity Metric
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Abstract—We introduce CatSIM, a new similarity metric for binary and multinary two- and three-dimensional images and volumes.
CatSIM uses a structural similarity image quality paradigm and is robust to small perturbations in location so that structures in similar,
but not entirely overlapping, regions of two images are rated higher than using simple matching. The metric can also compare arbitrary
regions inside images. CatSIM is evaluated on artificial data sets, image quality assessment surveys and two imaging applications.

Index Terms—image analysis, image segmentation, image similarity, distortion measurement, structural similarity, SSIM, Jaccard

F

1 INTRODUCTION

S IMILARITY metrics are important for comparing 2D im-
ages and 3D volumes, for instance, when evaluating

image processing or segmentation algorithms. Categorical
images assign nominal values at each pixel/voxel, e.g. in
tissue or land classification in medical or satellite images.
Most categorical image similarity methods only provide
pointwise class comparisons at each pixel/voxel [1], [2] and
ignore spatial context. Such measures [3] include the Jaccard
(J ) [4] or Dice (D) [5] indices for binary problems, Cohen’s
κ [6] or Hamming’s distance [7] for multi-class comparisons
with class labels having the same meaning in both cases
being compared, or the Rand (R) [8] or Adjusted Rand
indices (AR) [9] for when they do not. These metrics can
mislead, especially when the features of interest are objects
or fine structures like lines that may be spatially perturbed
with little visual effect but large pointwise perturbations.

There exist image similarity metrics that account for the
relationships of nearby points or features. For instance, [10],
[11] use geometric methods that account for spatial and
intensity distortions by identifying and comparing object
edges in images while [12] uses region-wise calculations and
asymptotic normality arguments to arrive at a regional mu-
tual information metric for comparing two images. The pop-
ular multiscale structural similarity (SSIM) or MS-SSIM [13],
[14] for color and grayscale images accounts for spatial and
intensity distortions as well as structural information across
multiple scales in the image. A computationally intensive
version, CW-SSIM [15] exists for grayscale and binary im-
ages. These methods have good general performance but
do not always align with human assessment [16]. Such
methods also do not apply to multi-class images or volumes
so we propose (Section 2) methodology that adapts statistics
specifically appropriate for multinary and binary data to
an SSIM-like approach. Section 3 illustrates and validates
our methods. The paper concludes with some discussion.
An online supplement with sections, figures and tables
referenced here using the prefix “S” is available.
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2 METHODOLOGY

2.1 Background and Previous Work

SSIM [13] is an image quality assessment index conceptually
designed to account for structural similarities in images
as visualized by a human rater. The basic version of the
index combines summary statistics on sliding N×N aligned
patches of the images (X and Y ) being compared. Let x
and y be aligned patches from X and Y , with µx and
µy being the averaged values in each patch, σ2

x and σ2
y

the variances, and σxy the covariance. The SSIM is calcu-
lated from the luminance, contrast and structural similarity
functions, l(x,y), c(x,y) and s(x,y) as follows. We define
l(x,y) = f(µx, µy;C1) and c(x,y) = f(σx, σy;C2) where

f(θ, φ; k) =
2θφ+ k

θ2 + φ2 + k
, s(x,y) =

σxy + C3

σxσy + C3
,

with C1, C2, and C3 small constants. The three functions
take values in [0,1], with 1 attained for identical patches. The
means and the standard deviations (SDs) of the two patches
influence l(x,y) and c(x,y) while s(x,y) compares the
covariance to their individual SDs. Averaging each function
over all possible N ×N patches in X and Y provides
l(X,Y ), c(X,Y ) and s(X,Y ). Multiplying these yields
SSIM(X,Y ) = l(X,Y )c(X,Y )s(X,Y ).

MS-SSIM [13] computes the SSIM at multiple scales after
downsampling and combining the results from each scale:

MS-SSIM(X,Y ) = lM (X,Y )αM

M∏
j=1

cj(X,Y )βjsj(X,Y )γj

where j indexes the scale at which c(X,Y ) and s(X,Y )
are computed, M is the highest scale after M − 1 iterations
of re-scaling, and αj , βj , and γj are constants on the M -
dimensional simplex. [13] use αj = βj = γj with values
empirically specified. The metric aims to capture local vari-
ation and structural similarities between images on several
scales in a way that mimics the human eye.

CW-SSIM [15] uses the product of functions of the mag-
nitude and phase of the complex wavelet coefficients of
images downsampled over 6 levels. The magnitudes feed
into a SSIM index that is 1 only when they match for both
images. The metric uses a function of the dot product of the
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phases that is 1 only when both images are aligned. CW-
SSIM is said to tie to computational models for vision [15].

The SSIM and MS-SSIM methods can be made to work
for binary images (by considering 0-1 to be part of the
continuum) while CW-SSIM is formulated for binary or
grayscale images. However, neither extends to nominal
multi-class images. CW-SSIM can also not handle image
data with missing observations (such as pixels/voxels out-
side a mask). Also, while not a major limitation, neither
methods are currently implemented for 3D volumes. So we
develop a SSIM metric for multi-class images and volumes.

2.2 Development of CatSIM
The SSIM philosophy can be developed for multinary im-
ages by defining suitable binary or multinary analogs of the
stages of the MS-SSIM algorithm. In Section 2.2.1, we intro-
duce luminance, contrast, and structural similarity functions
that respect the multinary nature of the data. In Section 2.2.2,
we define the method of downsampling to other scales. Fi-
nally, in Section 2.3, we specify how the results are combined
across scales to produce the final metric.

2.2.1 Index Functions
We first define statistics for a categorical image or image
patch x = (x1, x2, . . . , xn) and xi ∈ {1, 2, . . . ,K}. Let mx

be the vector of the proportions of each class in the patch x,
and Sx a categorical variance measure [17]. That is, define

pi =
1

n
#{xj = i, j ∈ 1, 2, . . . , n} for i = 1, 2, . . . ,K

mx = {pi}Ki=1, Sx =
1−

√∑K
i=1 p

2
i

1− 1/
√
K

=
1− ‖mx‖2
1− 1/

√
K
.

These quantities are related to the Gini-Simpson index [18],
[19] but are scaled similarly to the SD and constrained to
be in [0, 1]. For two aligned Nu×Nv(×Nw) sections of K-
class image (volume) patches x and y, with mx, my , Sx,
and Sy , we construct luminance, contrast, and structural
similarity functions analogous to SSIM for the continuous
case. Specifically, we insert categorical analogues in place of
the means and covariances (in SSIM) to get:

lc(x,y) =
2m>

xmy + C1

m>
xmx +m>

ymy + C1

cc(x,y) =
2SxSy + C2

S2
x + S2

y + C2
, sc(x,y) = v(x,y),

where C1, C2, are small scalar constants chosen for nu-
merical stability when the denominator approaches zero,
and v(x,y) is an inter-rater agreement measure chosen
based on the characteristics of the image. For instance, the
J and D indices are appropriate choices for v(x,y) in
binary problems where presence is more important than
absence [20]. Accuracy or κ is more appropriate if labels
have meaning while R or AR is more appropriate for
images with labels that are arbitrarily assigned. (Both κ and
AR can take negative values so are truncated to be in [0, 1].)

Our index can accommodate missing values, as in the
case of imaging a volume with known boundaries (e.g., a
mask in medical imaging applications), as in Sections 3.1.3
or 3.3.1, by the pair-wise deletion of corresponding points
in the sliding window calculations at each level.

2.2.2 Downsampling and combining across multiple scales
There are two issues to address: how to perform down-
sampling in a non-continuous (nominal discrete) setting and
how to combine the different results across scales. The MS-
SSIM algorithm down-samples by a factor of two after using
a low-pass filter to reduce aliasing artifacts but can not be
applied here because it disregards the structure of the data
in the binary case and is meaningless for multinary images.
We propose the mode of each 2×2(×2) slice (block) of pixels
(with a random choice from multiple modes if they exist).
The multiple scales can be combined for categorical images
in a similar manner as MS-SSIM and as detailed next.

2.3 The CatSIM Algorithm

By default, we specify uniform window sizesNu = Nv = 11
for 2D images and Nu = Nv = Nw = 5 for 3D volumes. We
also set M = 5 levels and, as in [13], αj = βj = γj ∀j. We
choose γjs to be uniform over the M -dimensional simplex.
These parameters can all be set based on the application.

1) For two images X and Y , the cc(x,y) and sc(x,y)
statistics are computed over a rolling Nu×Nv(×N)
pixel (voxel) window and averaged for the entire
image while lc(x,y) is computed for the base level.

2) Downsample each image by a factor of 2 using the
mode (break ties at random) of each 2×2(×2) block.

3) Repeat Steps 1 and 2 for each of M total levels.
4) Let lc1(X,Y ), ccj(X,Y ) and scj(X,Y ) be the av-

erage of lc1(x,y), c
c
j(x,y) and scj(x,y) over all

Nu×Nv(×Nw) blocks, for j = 1, 2, . . . ,M . Define

CatSIM(X,Y )

= [lc1(X,Y )]αM

M∏
j=1

ccj(X,Y )βjscj(X,Y )γj ,
(1)

with j indexing the level at which the luminance,
contrast and similarity functions are calculated.

3 ILLUSTRATIONS AND EVALUATIONS

3.1 Illustration of CatSIM

We illustrate CatSIM’s behavior on different distortions and
degradations of two binary images (one with a mask and
highly unequal class sizes) and one multinary image.

3.1.1 Expanded Besag binary image
[21] presented a 88×100 hand-drawn binary scene with

intentionally awkward features. We magnified the image
onto a 264×300 grid for it to be large enough to run CatSIM
(κ) with five layers and to accommodate spatial translations.
This expanded Besag image (EBI) (Figure 1a) was trimmed
by 12 pixels off the right and bottom margins to allow for
translations of the central portion. We created horizontally-
shifted (by 6 pixels, Figure 1b), vertical-shifted (by 6 pixels,
Figure 1d) and horizontally-and-vertically shifted (by 3 pix-
els in each direction, Figure 1f) versions of the EBI. Addi-
tional degraded versions (Figures 1c, 1e, and 1g) of the EBI
were created by adding salt-and-pepper noise (S&P) with
error rates matching those of each of the shifted images.
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(a) True (b) H.-shift (c) H.-S&P (d) V.-shift (e) V.-S&P (f) H.&V.-shift (g) H.&V.-S&P

Fig. 1. A binary image from Besag (Figure 1a) to demonstrate the CatSIM metric. There are three spatial translations of the central part of the
image (Figures 1b, 1d, and 1f) and images with salt-and-pepper noise added to match their error rates (Figures 1c, 1e, and 1g).

(a) True (b) H.-shift (c) H.-S&P (d) V.-shift (e) V.-S&P (f) H.&V.-shift (g) H.&V.-S&P

Fig. 2. A constructed multicategory image (Figure 2a) to demonstrate the CatSIM metric. There are three spatial translations of the central part of
the image (Figures 2b, 2d, and 2f) and images with salt-and-pepper noise added to match their error rates (Figures 2c, 2e, and 2g).

TABLE 1
CatSIM (κ) and other metrics for different distortions of the EBI of

Figure 1.

Image CatSIM
5 levels

CatSIM
1 level

CatSIM
(whole)

AR κ CW-SSIM

H Shift 0.594 0.464 0.763 0.627 0.763 0.831
H - S & P 0.515 0.092 0.769 0.630 0.771 0.783
V Shift 0.569 0.449 0.751 0.610 0.751 0.752
V - S & P 0.516 0.090 0.756 0.613 0.759 0.780
H & V Shift 0.658 0.561 0.827 0.720 0.827 0.834
H & V - S & P 0.557 0.110 0.832 0.725 0.834 0.810

Tables 1 and S1 illustrate the CatSIM, CW-SSIM and
other space-agnostic metrics on the different cases of Fig-
ure 1. Each pair (shifted and matching S&P-degraded orig-
inal) of figures have similar values for AR and κ. On the
other hand, CW-SSIM rates the horizontal- and horizontal-
and-vertically-shifted versions higher than their matching
noisy counterparts but lower for the vertically-shifted ver-
sion. However, the translated images are almost visually
indistinguishable from the original, since these are minor
spatial perturbations, while the noisy versions are more
discordant, and these factors should be reflected in a metric
that mimics the visual system. We compute three different
versions of CatSIM: the default with five different scales, the
default but with only the first scale (no downsampling), and
one computing the index for the entire image at once on one
scale (rather than averaging results from a sliding window).
CatSIM rates the spatially-shifted images differently from
the S&P-degraded images. The difference is stark when
considering only one level, to the point that it cannot pick
up the structural similarity at that scale. How much this
matters in the final index depends on the weights chosen for
each level. CatSIM calculated over the whole image (rather
than a sliding window) is expectedly not much different

from κ, which it is based on. Interestingly and like 1-level
CatSIM, MS-SSIM (Table S1) applied to 0-1 images assumed
to be in continuous space, regards the degraded images very
poorly with rates that are not justified visually. In summary,
the 5-level CatSIM (with default settings) provides the most
consistent representation of the scene.

3.1.2 Four-class image
Figure 2a is our example of a 220×220 four-class image, with
several distinct spatial regions and vertically and horizon-
tally symmetric, around the middle, in each dimension. MS-
SIM and CW-SSIM are not easily extended to the multinary
case, so we only study the behavior of CatSIM and the
space-unaware metrics to spatial shifts (Figures 2b, 2d 2f)
and matching S&P degradations (Figures 2c, 2e. 2g) of the
image obtained in the same manner as in Section 3.1.1.

Tables 2 and S2 list the index values. As in the EBI exam-

TABLE 2
CatSIM (κ) and other metrics for different distortions of the four-class

image of Figure 2.

Image CatSIM
5 levels

CatSIM
1 level

CatSIM
(whole)

AR κ

H Shift 0.816 0.686 0.906 0.828 0.906
H - S & P 0.610 0.105 0.906 0.842 0.907
V Shift 0.652 0.462 0.827 0.723 0.827
V - S & P 0.548 0.079 0.825 0.717 0.827
H & V Shift 0.814 0.533 0.869 0.777 0.869
H & V - S & P 0.565 0.093 0.874 0.790 0.875

ple, AR and κ values are similar for each pair of the shifted
and its S&P-matched twin. The case for the whole-image
CatSIM values is similar. However, the default 5-level and
1-level CatSIM indices clearly distinguish between images
that are minor spatial perturbations over images degraded
with added noise. The 1-level CatSIM index is unnecessarily
harsh on the S&P-degraded images, being very poor at
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recognizing similarity with the original. The 5-layer version
(with default parameters) recovers this similarity because
the downsampling smooths out the added noise.

3.1.3 Highly-imbalanced binary image
Our next illustration is on a binary image with a mask
and with disproportionate class sizes, as happens, say, in
activation detection with functional Magnetic Resonance
Imaging (fMRI) where no more 3% voxels are expected to be
activated. Our ground truth (Figure 3a) is a 256×256 version
of the modified 128×128 Hoffman activation phantom [22]
that has a small proportion (3.98%) of truly activated in-
brain pixels [23]. The in-brain pixels form a mask, which
also renders a method such as CW-SSIM inapplicable.

(a) Truth (b) D+1 (c) D+2 (d) E-1 (e) E-2

(f) S↑1 (g) S↓2 (h) + ε
100 (i) + 3ε

100 (j) S↑1+ 2ε
100

Fig. 3. (a) The in-brain portion of the modified Hoffman activation phan-
tom of [23] and distortions of its activated (dark-shaded) regions: dilation
by (b) 1 and (c) 2 pixels, erosion by (d) 1 and (e) 2 pixels, (f) upward shift
by 1 pixel, (g) downward shift by 2 pixels. Other distortions add noise by
randomly activating (h) 1%, (i) 3% and (j) 2% inactivated in-brain pixels,
the last after also shifting the activated region upward by 1 pixels.

We prepared nine distorted versions of the image using
mathematical morphology and other operations. Specifi-
cally, we dilated the activated regions by one (D+1) and
two (D+2) pixels (with 1 or 2 inactivated pixels orthogonally
adjacent to an activated pixel changing status), eroded the
activated regions by one (E-1) and two (E-2) pixels (essen-
tially deactivating any activated pixel orthogonally adjacent
to an inactivated one), the activation regions shifted up one
(S↑1) and down two (S↓2) pixels, the original image with
1% (+ ε

100 ) and 3% (+ 3ε
100 ) of the inactive pixels randomly

activated, and the original image with the activated regions
shifted up by one pixel and adding 2% noise (S↑1+2%).

The similarity indices for these distorted images (Table 3)
all agree with our expectation that an increase of distortion
- a larger shift or more noise - will have a lower similarity
to the base image. The accuracy (Acc.) is a poor measure in
this context because the important feature to capture is the
difference in activation, and it reports a very high agreement
for all of the distorted images (because the pixels in all
the images are largely of one class). The Jaccard and Dice
indices deteriorate as desired with increasing distortion and
both proposed methods, CatSIM with J , or CatSIM(J ) and
CatSIM with Cohen’s κ, do as well, though CatSIM(κ) is not
specifically designed for this behavior and does not capture
the difference as well as the other indices. Compared to

TABLE 3
Similarity indices for the distorted and degraded images of Figure 3.

J Dice Acc. CatSIM
(J )

CatSIM
(κ)

Dilated (D+1) 0.75 0.86 0.99 0.74 0.94
Dilated (D+2) 0.61 0.76 0.97 0.59 0.88
Eroded (E-1) 0.68 0.81 0.99 0.61 0.90
Eroded (E-2) 0.43 0.60 0.98 0.33 0.72
Shift Up (S↑1) 0.83 0.91 0.99 0.75 0.94
Shift Down (S↓2) 0.68 0.81 0.99 0.52 0.77
Noise (+ ε

100
) 0.81 0.90 0.99 0.63 0.80

Noise (+ 3ε
100

) 0.57 0.73 0.97 0.45 0.58
Shift+Noise (S↑1+ 2ε

100
) 0.58 0.73 0.97 0.42 0.63

J , CatSIM(J ) penalizes noise in the images more than
for minor perturbations that do not affect the basic spatial
extent of the activated region. We now study the impact of
the (five) layers in the calculation of CatSIM(J ).

Table 4 illustrates the utility of the five layers in the
calculation of the index. The first level, without any down-

TABLE 4
CatSIM (J ) values for each layer for different types of distortions. Layer
1 is the image itself while subsequent layers downsample the image in

the previous layer by a factor of 2.

Layer 1 2 3 4 5

Dilated (D+1) 0.60 0.65 0.68 0.83 1.00
Dilated (D+2) 0.43 0.48 0.53 0.62 1.00
Eroded (E-1) 0.52 0.51 0.57 0.56 1.00
Eroded (E-2) 0.28 0.32 0.34 0.38 0.35
Shift Up (S↑1) 0.72 0.59 0.72 0.75 1.00
Shift Down (S↓2) 0.55 0.59 0.58 0.59 0.35
Noise (+ ε

100
) 0.12 0.86 1.00 1.00 1.00

Noise (+ 3ε
100

) 0.04 0.46 1.00 1.00 1.00
Shift+Noise (S↑1+ 2ε

100
) 0.05 0.48 0.79 0.75 1.00

sampling, rates any added noise poorly, but higher levels
smooth out that difference. Relatively large differences, such
as caused by double erosion (E-2), damage the image’s
rating across all scales. Any larger scale than this in this
application has ratings of either 1 or 0 as the activated class
starts to disappear completely. The optimal number of levels
depends on the size of the features in the image, the type of
distortion, and the demands of the application, but using
five equally weighted levels seems, in this application and
generally, to strike a balance and provide good performance.

3.2 Image Quality Assessment Survey

Having ilustrated CatSIM’s ability to capture structural
similarity in categorical images, we now evaluate its ability
to represent human visual perception. We conducted two
separate surveys to compare the metric’s assessment on
binary and multinary images to human judgment of the
image quality. We discuss the surveys and their results next.

3.2.1 Assessment on Binary Images
Figure 4 displays the twelve 256×256 binary images that,
along with their distorted versions, were used in the survey.
The first image (Figure 4, first row) is of an 8-squares
checker-board pattern, and is followed by images of three
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Fig. 4. The 12 undistorted 256×256 binary images from the first survey.

thresholded Gaussian processes. The next row of images
(Figure 4) were obtained by thresholding monochrome im-
ages (of a texture, the lunar surface, an aerial view of, first,
an airfield with an airplane, and then a highway overpass)
from the USC-SIPI image database. The last set of binary
images had thresholded versions of four handwriting sam-
ples from the NIST Special Database 19 [24]. Seventy-four
adult volunteers were shown 30 pairs of images, with each
pair comprising a randomly chosen image from Figure 4
and a distorted version. They were asked to rate the quality
of each distorted image on a scale from 1 to 100, with 100
indicating perfect fidelity. For each of 12× 12 = 144 ground
truth-distorted image pairs, we calculated the mean opinion
scores (MOS) over all the respondents shown that particular
image pair. For these image pairs, we compared the MOS
to CW-SSIM, the space-unaware metrics of κ, AR, J and
accuracy (that can be related to Peak-Signal-to-Noise-Ratio)
and the CatSIM metrics with κ, AR, J and accuracy.

Figure 5, displays the MOS with each of the metrics

CW−SSIM Jaccard Index Adjusted Rand Accuracy

CatSIM (Cohen) CatSIM (Jaccard) CatSIM (AdjRand) CatSIM (Accuracy)
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Fig. 5. Adjusted Rand index, CW-SSIM, CatSIM, Jaccard index, and
accuracy compared to MOS rating for binary images in the first survey.
CatSIM is computed using the default κ, AR, J and accuracy.

under consideration. These metrics are all positively corre-
lated with the MOS, with CatSIM methods using κ, AR and
accuracy performing the best (Table 5(a)). A randomization
test (see Section S2-A for details) indicated significantly

TABLE 5
Correlation with MOS for each metric and (b) p-value of test statistic for

the assessment on binary images.

Method ρ

CatSIM (Acc) 0.601
CatSIM (κ) 0.598
CatSIM (AR) 0.580
MS-SSIM 0.578
Cohen’s κ 0.577
AR 0.557
CW-SSIM 0.510
Accuracy 0.500
CatSIM (J ) 0.470
Jaccard 0.464

(a) Correlations (ρ)

CatSIM
(κ)

CatSIM
(AR)

CatSIM
(Acc)

MS-SSIM 0.311 0.424 0.410
CW-SSIM 0.018 0.082 0.069
Accuracy 0.032 0.029 0.033
Cohen’s κ 0.203 0.369 0.348
AR 0.123 0.246 0.204

(b) p-value of test statistic that MOS
correlates with CatSIM metrics (col-
umn) more than with other meth-
ods (row). Bold text indicates signifi-
cance at the 5% level.

higher correlations with the MOS for CatSIM (κ) against
CW-SSIM and accuracy and for both CatSIM (AR) and
CatSIM (Accuracy) against accuracy (Table 5(b)). To assess
relationships beyond linear association, we also fit (see
Figure 5) a monotonic generalized additive model (GAM) to
the MOS-values against each metric [25], [26] using general-
ized cross-validation (GCV) to choose the GAM smoothing
parameters. While the CW-SSIM model (Table S4) had the
best fit (explaining 39.1% of the deviance), CatSIM (AR)
and CatSIM (κ) were ahead of the rest with 37.5 and 37.1%
deviance explained. See Section S2-B for more details.

3.2.2 Assessment on Multinary Images
This survey used the six multicategory images of Figure 6.
Each of 614 adult volunteers were shown 11 sets of 4

Fig. 6. The undistorted multinary images used in the image ranking
survey. Respondents were presented a series of panels of 4 distorted
versions of each image and asked to rank their quality.

distorted images (see Section S3 for examples) along with
the ground truth and asked to rank the distorted images
from most to least similar to the original. (Because multi-
nary settings require larger sample sizes, we preserved
power by asking participants to rank rather than score.
Additionally, ranking provides a more objective basis for
comparison across subjects.) In these examples, the labels in
the original and distorted images had the same meaning,

http://sipi.usc.edu/database/database.php
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TABLE 6
Squared differences in mean rankings produced by human raters in the

survey and the rankings produced by similarity metrics.

Method Squared Difference RMSE

CatSIM (Accuracy) 72.385 0.1933
CatSIM (Rand) 74.434 0.1961
CatSIM (κ) 77.695 0.2003
MOS 79.848 0.2030
Adjusted Rand Index 81.525 0.2052
Cohen’s κ 81.548 0.2052
Rand Index 85.014 0.2096
Accuracy 85.461 0.2101
CatSIM (Adj Rand) 87.838 0.2130

so using CatSIM with (say) κ rather than AR or R is more
appropriate. Table 6 reports the squared difference between
the mean rankings of the sets of images by the raters
and by the different metrics (the CatSIM variants and the
space-unaware accuracy, R, AR and κ). In this experiment,
the CatSIM methods using accuracy, the Rand index, or
Cohen’s κ produce rankings more similar to those produced
by human raters compared to methods that consider only
pointwise measures of agreement.

3.3 Application to Real-Data Examples
Our final evaluations are with two real-life applications, the
first of which computes similarity between binary 3D image
volumes and the other in 2D multinary images. Both our
applications involve the use of masks in computations.

3.3.1 Assessing Test-Retest Reliability of Activation in fMRI
Repeatability of results across multiple fMRI [27], [28] stud-
ies is important to understand the variability of activa-
tion [29], [30] and to gauge its potential in single-subject
studies [31] with a view to its adoption in clinical set-
tings. Reliability of such activation is challenged by many
factors [31], [32], not least of which is the fact that very
few (no more than 3% of voxels) are expected to be truly
activated. [33] introduced J (instead of D) in fMRI to more
finely assess reliability of activation, and a summarized
version (J̈ ) across K replicated studies that computes the
largest eigenvalue (λJ ) of the matrix of pairwise J s and
sets J̈ = (λJ − 1)/(K − 1). The underlying J is space-
unaware so here we assess whether CatSIM(J ) can improve
consistency of detected activation across studies.

Our data are from the replicated right- and left-hand
finger-tapping experiments of [32] in which activation was
detected using the AR-FAST [23] algorithm. For clarity of
presentation, we restrict attention only to the six 128×128×
128× 22 images that had the most detected activation for
each hand. Most of the activation (Figure S7) is, expectedly,
in the 18th through the 21st slices encompassing the (left
or right, converse to the hand used for tapping) ipsi- and
contra-lateral pre-motor cortices (pre-M1), the primary mo-
tor cortex (M1), the pre-supplementary motor cortex (pre-
SMA) and the supplementary motor cortex (SMA). There is
wide variability of detected activation in the contra-lateral
pre-M1, pre-SMA and SMA voxels. Figure 7(a) displays
radiologic views of the activation in the 20th slice across
the 12 experiments. Given the very small proportion of
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Fig. 7. Activation images of the 20th slice in the finger-tapping experi-
ments. (b,c) Graphical displays of J and CatSIM(J ) values for each 3D
volume pair, with Ri or Li indicating ith right- or left-hand experiment.

expected activated voxels, we only use J and CatSIM(J ).
Figure 7(b) displays the pairwise J between the 12 3D ac-
tivation image volumes. We see highest similarity between
the second and the third activation images. Mild similarity
between detected activation in some of the left-hand and
right-hand activation maps is also reported. On the other
hand, Figure 7(c) shows that such commonality of activation
is likely from stray voxels and not structurally supported,
as also seen by careful inspection of the activation images
in Figure S7. Further, Figure 7(c) shows that there is greater
reliability in the activation detected in the left-hand exper-
iments which show greater specificity as the right-hand-
dominant male shows greater focus in carrying out a left-
hand task. In general, Figure 7(c) shows a wider range of
values than Figure 7(b), allowing for greater discrimination.
Further, J̈ , calculated using the pairwise J s for each of the
right- and left-hand experiments were both 0.189 but 0.297
and 0.361 when the pairwise CatSIM(J ) values were substi-
tuted for J in the calculation of the summarized coefficient.
While the higher values for the left-hand experiments are as
expected for a right-hand-dominant subject, the generally
low values of CatSIM(J ) (or J ) illustrates the challenge of
reliable activation detection in single-subject fMRI.

3.3.2 Evaluating Image Segmentation Algorithms
Image segmentation is important in several applications
with many algorithms whose performance need to be cali-
brated. For example, segmenting Magnetic Resonance (MR)
images into regions of gray matter, white matter, or cere-
brospinal fluid is important for diagnostic purposes and
important for automated image processing. We demonstrate
CatSIM on a practical example using data made available by
[34] who evaluate their new segmentation algorithm using
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simulated datasets from BrainWeb [35]–[37], and real-data
images from MRBrainS [38]. The BrainWeb interface pro-
vides multisequence (T1-, T2- and proton density-weighted)
simulated brain images with different levels of nonhomo-
geneous Rayleigh noise. The MRBrainS dataset consists of
multisequence (T1-weighted, T1-weighted inversion recov-
ery, and T2-weighted fluid attenuated inversion recovery)
3T MR scans of twenty subjects, manually-segmented by
experts. [34] compare existing segmentation algorithms to
their method which uses LSTM (long short-term memory)
recurrent neural networks that account for the multi-modal
nature of the data and local structure in their classification.
Here we present comparisons of three of their methods
– LSTM-MA (LSTM with multi-modality and adjacency
constraint), SLIC-LSTM-MA (LSTM with multi-modality
and super-pixel adjacency constraints), and SLIC-BiLSTM-
MA (bi-directional LSTM with multi-modality and super-
pixel adjacency constraints) – to k-means, support vector
machines (SVM), and k-nearest neighbors (KNN) for both
the MRBrainS and BrainWeb data with different amounts of
Gaussian (for MRBrainS) and Rayleigh (for Brainweb) noise.
Figure 8(a) shows an example baseline image, Figure 8(b)
one of its noisy versions, Figure 8(c) the ground truth
segmentation, and Figure 8(d) illustrates a segmentation
of the noisy image obtained using SLIC-BiLSTM-MA. [34]
provide five examples, three (Images C080, S099, and T075)
of which are coronal, sagittal, and transverse slices from the
BrainWeb data set, and two (Images 2T25 and 4T28) are
transverse slices from the MRBrainS data set. They evaluate
all methods using accuracy andD. Figure 8e presents a com-
parison between the accuracy and the CatSIM metric (with
accuracy) for these methods across the different levels of
added noise. We see that the CatSIM metric gives, for almost
all noise settings and across all images, the same ordering
of the methods as the accuracy. However, the spread of the
results is greater, meaning that, as in Section 3.3.1, we get
better discrimination between the methods using CatSIM
than with pointwise accuracy.

4 DISCUSSION

We have presented a novel image similarity metric called
CatSIM, implemented in an R [39] package, catsim, that
accounts for structural similarities in binary and multinary
images and extends to 3D volumes. The metric can be
used with masks, which means that or can accommodate
arbitrary shapes inside the images and volumes. CatSIM
is more similar to human perception in ranking images
and provides greater discrimination between segmentations
than currently-used metrics. These findings are supported
by results of experiments with artificially-created data and
real data sets as well as of survey data of subjective image
quality ratings. CatSIM can also flexibly deal with labels that
have meaning or labels that are arbitrarily assigned.

There are a number of issues that can benefit from
further attention. For instance, we could investigate the use
of smoother windowing functions. Further evaluation of the
weighting at different levels of the index would also be
worth pursuing. Other refinements could include incorpo-
rating fuzzy class labels, different misclassification costs, or
hierarchical class information within the framework.
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Fig. 8. (a) Baseline image of slice C080 from the simulated BrainWeb
data set and the same image with (b) 5% Rayleigh noise added, (c)
ground truth segmentation and (d) predicted segmentation of the noisy
image using the SLIC-BiLSTM-MA algorithm. (e) Comparison between
Accuracy and CatSIM(Accuracy) for MR images in evaluating different
segmentation algorithms of MR images with different noise levels.
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Supplement to “CatSIM: A Similarity Metric for Categorical Images and Volumes”
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S1. ADDITIONAL RESULTS FOR SECTION 3.1
EBI Example

Table S1 provides more detailed results of the demonstration in Section 3.1.1 of how different metrics respond to geometric
distortion and the addition of salt-and-pepper noise. In addition to the metrics reported there, we include the results for CatSIM
using accuracy and the Rand index as the similarity metric inside it.

TABLE S1: CatSIM and other metrics for the distorted binary images of the EBI.

Metrics Horiz.
Shift

S & P
Match

Vert.
Shift

S & P
Match

Hor. and
Vert. Shift

S & P
Match

CatSIM 5 levels 0.594 0.515 0.569 0.516 0.658 0.557
CatSIM 1 level 0.464 0.092 0.449 0.090 0.561 0.110
CatSIM (whole) 0.763 0.769 0.751 0.756 0.827 0.832
CatSIM (accuracy) 0.806 0.750 0.791 0.752 0.842 0.777
CatSIM (Jaccard) 0.590 0.581 0.571 0.584 0.647 0.618
CatSIM (AR) 0.479 0.480 0.440 0.483 0.538 0.533
CatSIM (Rand) 0.734 0.723 0.714 0.727 0.771 0.758
MS-SSIM 0.670 0.135 0.659 0.130 0.700 0.170
CW-SSIM 0.831 0.783 0.752 0.780 0.834 0.810
Accuracy 0.898 0.898 0.893 0.893 0.926 0.927
Jaccard 0.720 0.734 0.708 0.723 0.788 0.799
AdjRand 0.627 0.630 0.610 0.613 0.720 0.725
Rand 0.817 0.818 0.809 0.809 0.863 0.864
Cohen’s κ 0.763 0.771 0.751 0.759 0.827 0.834

Table S2 provides more detailed results of the demonstration in Section 3.1.2. In addition to the metrics reported there, we
include the results for CatSIM using accuracy and the Rand index as the similarity metric inside it.

TABLE S2: CatSIM and other metrics for the 4-class image example.

Metrics Horiz.
Shift

S & P
Match

Vert.
Shift

S & P
Match

Hor. and
Vert. Shift

S & P
Match

CatSIM 5 levels 0.816 0.610 0.652 0.548 0.814 0.565
CatSIM 1 level 0.686 0.105 0.462 0.081 0.533 0.092
CatSIM (whole) 0.906 0.906 0.827 0.829 0.869 0.869
CatSIM (accuracy) 0.892 0.808 0.796 0.764 0.906 0.778
CatSIM (AR) 0.783 0.604 0.592 0.538 0.785 0.558
CatSIM (Rand) 0.879 0.799 0.770 0.748 0.886 0.765
Accuracy 0.936 0.935 0.881 0.882 0.910 0.910
AdjRand 0.828 0.842 0.723 0.723 0.777 0.784
Rand 0.926 0.933 0.881 0.883 0.904 0.909
Cohen’s κ 0.906 0.907 0.827 0.831 0.869 0.871

S2. ADDITIONAL RESULTS AND DETAILS FOR SECTION 3.2.1
A. Randomization Test for Difference in Correlations

To test whether the correlation of a metric, m1, with the MOS (mean opinion score on the survey), M , is greater than
another metric, m2, we standardize m1, m2, and M and perform the following randomization test:

1) For each distorted image, swap standardized elements of m1 and m2 with probability 0.5 to create new vectors m̃1 and
m̃2.

2) Compute and record corr(M, m̃1)− corr(M, m̃2).
3) Repeat n times.
4) Define the p value as the proportion of times corr(M,m1)− corr(M,m2) > corr(M, m̃1)− corr(M, m̃2).

The results of this test with n = 100, 000 are listed in Table S3.

B. Image rankings by monotonic GAM
We fit monotonic GAMs with an identity link function and Normal random components using the metrics as explanatory

variables and the MOS (mean opinion score) as the response variable. The percentage of deviance explained by the model,
reported in Table S4, is then a non-parametric measure of the correspondence between the image quality metrics and the
subjective quality of the images.



TABLE S3: Results of a randomization test of whether the correlation of MOS with the CatSIM method is greater than the
comparison methods. Italics indicate p < 0.05. The left column indicates the CatSIM variant and the middle column indicates
the metric it is compared to.

CatSIM metric Comparison p-value

CatSIM (κ) MS-SSIM 0.311
CatSIM (κ) CW-SSIM 0.018
CatSIM (κ) Accuracy 0.032
CatSIM (κ) Cohen’s κ 0.203
CatSIM (κ) AdjRand 0.123

CatSIM (J ) Jaccard 0.374
CatSIM (Acc) MS-SSIM 0.424
CatSIM (Acc) CW-SSIM 0.082
CatSIM (Acc) Accuracy 0.029
CatSIM (Acc) Cohen’s κ 0.369
CatSIM (Acc) AdjRand 0.246
CatSIM (AR) MS-SSIM 0.410
CatSIM (AR) CW-SSIM 0.069
CatSIM (AR) Accuracy 0.033
CatSIM (AR) Cohen’s κ 0.348
CatSIM (AR) AdjRand 0.204

TABLE S4: The percent of deviance in MOS explained by a monotonic GAM with an identity link function and normal errors
with smoothing parameter selection by generalized cross validation.

Method % Deviance

CatSIM (Acc) 0.221
Adjusted Rand 0.323
Cohen’s κ 0.329
CatSIM (J ) 0.334
Jaccard 0.348
MS-SSIM 0.356
Accuracy 0.361
CatSIM (κ) 0.371
CatSIM (AR) 0.375
CW-SSIM 0.391

S3. ADDITIONAL DETAILS FOR SECTION 3.2.2

Image rankings in the categorical survey

Respondents were shown 11 sets of four distorted images. For each set of four distorted images, they were shown the true,
undistorted image and asked to rank the four distorted images by their quality compared to the true image. The 11 sets were
presented in a random order. Within the panels of four images, the order and labels (A, B, C, and D) were fixed. Below are
the 11 sets of four distorted images shown in the survey. There were two different sets for two of the original images and one
set for one of the images.



(a) Set 1-1. (b) Set 1-2.

Fig. S1: The two sets of distorted images used in the image ranking survey for image 1.

(a) Set 2-1. (b) Set 2-2.

Fig. S2: The two sets of distorted images used in the image ranking survey for image 2.



(a) Set 3-1. (b) Set 3-2.

Fig. S3: The two sets of distorted images used in the image ranking survey for image 3.

(a) Set 4-1. (b) Set 4-2.

Fig. S4: The two sets of distorted images used in the image ranking survey for image 4.



(a) Set 6-1. (b) Set 6-2.

Fig. S5: The two sets of distorted images used in the image ranking survey for image 6.

Fig. S6: The one set of distorted images used in the image ranking survey for image 5.



S4. ASSESSING TEST-RETEST RELIABILITY IN FMRI

Fig. S7: Radiologic views of activation detected by AR-FAST in the top 16 slices (Slices 7-22, column-wise) and in each of
the 6 right-hand (first six rows) and left-hand (last six rows) finger-tapping experiment.


