A special mathematical function related to the gamma function,
generalized for multivariate gammas. lmvgamma
is the log of the
multivariate gamma, mvgamma
.
The multivariate gamma function for a dimension p is defined as:
$$\Gamma_{p}(a)=\pi^{p(p-1)/4}\prod_{j=1}^{p} \Gamma [a+(1-j)/2]$$ For \(p = 1\), this is the same as the usual gamma function.
lmvgamma(x, p)
mvgamma(x, p)
For lmvgamma
log of multivariate gamma of dimension p
for each entry of x
. For non-log variant,
use mvgamma
.
mvgamma()
: Multivariate gamma function.
A. K. Gupta and D. K. Nagar 1999. Matrix variate distributions. Chapman and Hall.
Multivariate gamma function. In Wikipedia, The Free Encyclopedia,from https://en.wikipedia.org/w/index.php?title=Multivariate_gamma_function
lgamma(1:12)
#> [1] 0.0000000 0.0000000 0.6931472 1.7917595 3.1780538 4.7874917
#> [7] 6.5792512 8.5251614 10.6046029 12.8018275 15.1044126 17.5023078
lmvgamma(1:12, 1L)
#> [1] 0.0000000 0.0000000 0.6931472 1.7917595 3.1780538 4.7874917
#> [7] 6.5792512 8.5251614 10.6046029 12.8018275 15.1044126 17.5023078
mvgamma(1:12, 1L)
#> [1] 1 1 2 6 24 120 720 5040
#> [9] 40320 362880 3628800 39916800
gamma(1:12)
#> [1] 1 1 2 6 24 120 720 5040
#> [9] 40320 362880 3628800 39916800