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Presenting the Problem

Two images where each pixel is classified into one of several
categories. One image (left) is the “ground truth” and the other
(right) is a distorted version. How can they be compared?
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Some Ideas (very non-exhaustive)

Binary:

• Accuracy (simple agreement)
• Jaccard Index
• Dice Index

Multi-class:

• Accuracy (simple agreement)
• Cohen’s κ
• Rand or Adjusted Rand Index
• Mutual Information
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What can be improved with these?

These are pixel-by-pixel metrics useful for evaluating clustering
solutions. However, the images we are looking at have structure.

The second image is the same as the first except the large blots are
shifted down two pixels.

We want a measure that captures this similarity.

There are other measures that try to capture topology, edges, or
other non-local similarities. 4



Inspiration from Other Image Similarity Metrics

The popular multiscale structural similarity or MS-SSIM for color
and grayscale images accounts for spatial and intensity distortions
as well as structural information across multiple scales in the image.

The idea is to create an image similarity metric that agrees with
human perception of images by looking at structural similarities
within the image at multiple scales.

See:
Wang, Z., Simoncelli, E.P., Bovik, A.C. Multiscale Structural Similarity for Image Quality Assessment. In: The
Thirty-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, 1398–1402. Pacific Grove, CA, USA:
IEEE, 2003. https://doi.org/10.1109/ACSSC.2003.1292216.
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Inspiration (continued)

CW-SSIM is similar, but uses complex wavelets. It is used with
binary images, grayscale images, and segmented images. It is
designed to deal with image scaling, translation, and rotation.

See:
M. Sampat, Z. Wang, S. Gupta, A. Bovik, and M. Markey, “Complex wavelet structural similarity: A new image
similarity index,” IEEE Transactions on Image Processing, vol. 18, no. 11, pp. 2385–2401, 11 2009.
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Components of MS-SSIM

When working only on one scale, the SSIM has a “luminance”,
“contrast”, and “structural similarity” function, which compare the
local means, local standard deviations, and local covariances of the
two images.

l(x , y) = 2µxµy + c1
µ2x + µ2y + c1

c(x , y) = 2σxσy + c2
σ2x + σ2y + c2

s(x , y) = σxy + c3
σxσy + c3

These functions are computed for each N × N window of pixels in
the image and are then combined together for each window:

SSIM(x , y) =
[
l(x , y)α · c(x , y)β · s(x , y)γ

]
α, β, and γ are considered later - they will vary depending on which scale we are on.
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Image Pyramid

• A type of multiscale
representation of images

• Different smoothing options
possible - e.g. binomial or
Gaussian

• Relevance: how MS-SSIM
combines multiple scales of
the image

Source: https://commons.wikimedia.org/wiki/File:Image_pyramid.svg by C.M.G. Lee
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MS-SSIM across scales

So far we have defined the MS-SSIM for one scale. To consider
structural similarities across scales: downsample by a factor of 2
(with a low-pass filter) and compute the same statistics.

MS-SSIM(X ,Y ) = lM(X ,Y )αM
M∏

j=1
cj(X ,Y )βj sj(X ,Y )γj

The MS-SSIM as specified by Wang et al uses 5 levels and specific
settings of α, β, and γ for each level.

The metric aims to capture local variation and structural similarities
between images on several scales in a way that mimics the human
eye.
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Changing it for the non-continuous context

We need to replace them with statistics for categorical variables
rather than continuous ones.

Then we need to combine the measures across different scales.

For a categorical variable, the equivalent of means would be the
vector of proportions in each class. We can define a similar
categorical variance measure as well.

pi = 1
n{#xj = i , j ∈ 1, 2, . . . , n} for i = 1, 2, . . . ,K

mx = {pi}Ki=1, Sx =
1−

√∑K
i=1 p2

i

1− 1/
√

K
= 1− ‖mx‖2

1− 1/
√

K
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Index Measures (continued)

These can then be combined into categorical analogues of the SSIM.
We can define, for one level, for each N × N window of the image:

lc(x , y) = 2m>
x my + C1

m>
x mx + m>

y my + C1

cc(x , y) = 2SxSy + C2
S2

x + S2
y + C2

, sc(x , y) = v(x , y),

where C1, C2, are small scalar constants chosen for numerical
stability when the denominator approaches zero, and v(x , y) is an
inter-rater agreement measure chosen based on the characteristics
of the image.
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Inter-rater agreement

We need an appropriate replacement for the “structural similarity”
function which is based on the covariance. This will depend on the
nature of the image.

• Jaccard or Dice in binary problems if labels are not
symmetrically defined (e.g., activation)

• Accuracy or Cohen’s κ if labels are meaningful
• Rand or Adjusted Rand if labels are arbitrarily assigned
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Downsampling

For continuous variables, rescaling is well-understood: downsample
and apply a low-pass filter.

Here, we have two options:

1. Take the mode of each 2× 2 block and use a random mode if
tied.

2. Instead of downsampling, double the size of the window.

Both give similar results, and the results presented here are option 1.
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Final CatSIM Algorithm

By default, we specify uniform window sizes of 11× 11 and M = 5
different levels for 2D applications. We set αj = βj = γj = 1/M.
These parameters can be adjusted based on the application.

1. For two images X and Y , the cc(x , y) and sc(x , y) statistics
are computed over a rolling N×N pixel (voxel) window and
averaged for the entire image while lc(x , y) is computed for the
base level.

2. Downsample each image by a factor of 2.
3. Repeat steps 1 and 2 for each of M total levels.
4. Let lc

1 (X ,Y ), cc
j (X ,Y ) and sc

j (X ,Y ) be the average of
lc
1 (X ,Y ), cc

j (X ,Y ) and sc
j (X ,Y ) over all N ×N windows, for

j = 1, 2, . . . ,M. Define

CatSIM(X ,Y ) = [lc
1 (X ,Y )]αM

M∏
j=1

cc
j (X ,Y )βj sc

j (X ,Y )γj ,

with j indexing the level at which the luminance, contrast and
similarity functions are calculated.
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Illustration: Besag (1986) Binary Image

The original 88× 100 image has been blown up to a 264× 300
image. We added spatial translations and salt-and-pepper noise to
match the error in the spatially-translated images. We compute the
default CatSIM, CatSIM with only one level, CatSIM with a window
equal to the entire image, and the Adjusted Rand (AR), Cohen’s κ,
and CW-SSIM.
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Illustration: Besag (1986) Binary Image

Table 1: CatSIM (κ) and other metrics for different distortions.

Image CatSIM 5 levels CatSIM 1 level CatSIM (whole) AR κ CW-SSIM
H Shift 0.594 0.464 0.763 0.627 0.763 0.831
H - S & P 0.515 0.092 0.769 0.630 0.771 0.783
V Shift 0.569 0.449 0.751 0.610 0.751 0.752
V - S & P 0.516 0.090 0.756 0.613 0.759 0.780
H & V Shift 0.658 0.561 0.827 0.720 0.827 0.834
H & V - S & P 0.557 0.110 0.832 0.725 0.834 0.810

CatSIM rates the spatially-shifted images differently from the
S&P-degraded images.
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Illustration: Constructed Image

Here we construct a 220× 220 image with 4 classes. We added
spatial translations and salt-and-pepper noise to match the error in
the spatially-translated images. We compute for comparison the
default CatSIM, CatSIM with only one level, CatSIM with a window
equal to the entire image, and the Adjusted Rand (AR) and Cohen’s
κ. The true image is on the left.
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Illustration: Constructed Image Results

Image CatSIM 5 levels CatSIM 1 level CatSIM (whole) AR κ

H Shift 0.816 0.686 0.906 0.828 0.906
H - S & P 0.610 0.105 0.906 0.842 0.907
V Shift 0.652 0.462 0.827 0.723 0.827
V - S & P 0.548 0.079 0.825 0.717 0.827
H & V Shift 0.814 0.533 0.869 0.777 0.869
H & V - S & P 0.565 0.093 0.874 0.790 0.875

The default 5-level and 1-level CatSIM indices clearly distinguish
between images that are minor spatial perturbations over images
degraded with added noise.
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Illustration: Highly-Imbalanced Binary Image

Our ground truth is a 256×256 version of the modified 128×128
Hoffman activation phantom that has a small proportion (3.98%) of
truly activated in-brain pixels. We dilate, erode, shift, and add
salt-and-pepper noise.
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Illustration: Highly-Imbalanced Binary Image

J Dice Acc. CatSIM (J) CatSIM (κ)
Dilated (D+1) 0.75 0.86 0.99 0.74 0.94
Dilated (D+2) 0.61 0.76 0.97 0.59 0.88
Eroded (E-1) 0.68 0.81 0.99 0.61 0.90
Eroded (E-2) 0.43 0.60 0.98 0.33 0.72
Shift Up (S↑1) 0.83 0.91 0.99 0.75 0.94
Shift Down (S↓2) 0.68 0.81 0.99 0.52 0.77
Noise (+ ε

100 ) 0.81 0.90 0.99 0.63 0.80
Noise (+ 3ε

100 ) 0.57 0.73 0.97 0.45 0.58
Shift+Noise (S↑1+ 2ε

100 ) 0.58 0.73 0.97 0.42 0.63

Compared to the Jaccard index, CatSIM(J) penalizes noise in the
images more than for minor perturbations that do not affect the
basic spatial extent of the activated region.
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Illustration: Highly-Imbalanced Binary Image

Here we investigate the utility of using 5 layers.

Table 2: CatSIM (J) values for each layer for different types of distortions.
Layer 1 is the image itself subsequent layers downsample by a factor of 2.

Layer 1 2 3 4 5
Dilated (D+1) 0.60 0.65 0.68 0.83 1.00
Dilated (D+2) 0.43 0.48 0.53 0.62 1.00
Eroded (E-1) 0.52 0.51 0.57 0.56 1.00
Eroded (E-2) 0.28 0.32 0.34 0.38 0.35
Shift Up (S↑1) 0.72 0.59 0.72 0.75 1.00
Shift Down (S↓2) 0.55 0.59 0.58 0.59 0.35
Noise (+ ε

100 ) 0.12 0.86 1.00 1.00 1.00
Noise (+ 3ε

100 ) 0.04 0.46 1.00 1.00 1.00
Shift+Noise (S↑1+ 2ε

100 ) 0.05 0.48 0.79 0.75 1.00

The first level rates added noise poorly, but higher levels smooth out
that difference. Large differences, like double erosion (E-2), damage
the image’s rating across all scales. Any larger scale than this has
ratings of either 1 or 0 as the activated class disappears completely.
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Image Quality Assessment Surveys

For the twelve binary images shown here, 12 distorted versions of
each were created and 74 adult volunteers were randomly shown 30
distorted images and their corresponding undistorted version and
asked to rate the quality of each distorted image on a scale from 1
to 100, with 100. We then calculate a mean opinion score (MOS)
for each image.
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Image Quality Assessment Surveys: Binary Results

We compared the MOS to CW-SSIM, the space-unaware metrics of
κ, AR, Jaccard, and accuracy (that can be related to
Peak-Signal-to-Noise-Ratio) and the CatSIM metrics with κ, AR, J
and accuracy.

CW−SSIM Jaccard Index Adjusted Rand Accuracy

CatSIM (Cohen) CatSIM (Jaccard) CatSIM (AdjRand) CatSIM (Accuracy)
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Table 3: Correlation
with MOS for each
metric.

Method ρ

CatSIM (Acc) 0.601
CatSIM (κ) 0.598
CatSIM (AR) 0.580
MS-SSIM 0.578
Cohen’s κ 0.577
AR 0.557
CW-SSIM 0.510
Accuracy 0.500
CatSIM (J) 0.470
Jaccard 0.464
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Image Quality Assessment Surveys: Binary Results

Table 4: P-values for the randomization test of whether the CatSIM
methods are more correlated with MOS.

CatSIM (κ) CatSIM (AR) CatSIM (Acc)
MS-SSIM 0.311 0.424 0.410
CW-SSIM 0.018 0.082 0.069
Accuracy 0.032 0.029 0.033
Cohen’s κ 0.203 0.369 0.348
AR 0.123 0.246 0.204

These metrics are all positively correlated with the MOS, with
CatSIM methods using κ, AR and accuracy performing the best. A
randomization test indicated significantly higher correlations with
the MOS for CatSIM (κ) against CW-SSIM and accuracy and for
both CatSIM (AR) and CatSIM (Accuracy) against accuracy.
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Image Quality Assessment Surveys: Categorical Images

Each of 614 adult volunteers were shown 11 sets of 4 distorted
images along with the ground truth and asked to rank the distorted
images in each set from most to least similar to the original.
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Image Quality Assessment Surveys: Categorical Images

An example of a panel of four distorted images shown to volunteers:
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Image Quality Assessment Surveys: Categorical Images

The table reports the squared difference between the mean rankings
of the sets of images by the raters and by the different metrics (the
CatSIM variants and the space-unaware accuracy, Rand, AR and κ).

Table 5: Squared differences in mean rankings produced by human raters
in the survey and the rankings produced by similarity metrics.

Method Squared Difference RMSE
CatSIM (Accuracy) 72.385 0.1933
CatSIM (Rand) 74.434 0.1961
CatSIM (κ) 77.695 0.2003
MOS 79.848 0.2030
Adjusted Rand Index 81.525 0.2052
Cohen’s κ 81.548 0.2052
Rand Index 85.014 0.2096
Accuracy 85.461 0.2101
CatSIM (Adj Rand) 87.838 0.2130

In this experiment, the CatSIM methods using accuracy, the Rand
index, or Cohen’s κ produce rankings more similar to those
produced by human raters 27



Applications to Real Data

• Assessing Test-Retest Reliability of Activation in fMRI

• Evaluating Image Segmentation Algorithms

28



Test-Retest Reliability of Activation in fMRI

Repeatability of results across multiple fMRI studies is important.

Our data are from the replicated right- and left-hand finger-tapping
experiments in which activation was detected using the AR-FAST
algorithm.
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Activation images of the 20th slice in the finger-tapping experiments.
The top row is right-hand and the bottom is left-hand experiments.

29



Test-Retest Reliability Continued
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Graphical displays of J and CatSIM(J) values for each 3D volume
pair, with Ri or Li indicating ith right- or left-hand experiment.
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Evaluating Image Segmentation

Segmenting Magnetic Resonance (MR) images into regions of gray
matter, white matter, or cerebrospinal fluid is important for
diagnostic purposes and important for automated image processing.
We demonstrate CatSIM on a practical example using data made
available by Xie and Wen (2019) who evaluate their new
segmentation algorithm using simulated datasets from BrainWeb,
and real-data images from MRBrainS.

Baseline image C080 from the BrainWeb data set, image C080 with 5% Rayleigh noise added, Ground Truth
segmentation of image C080, predicted SLIC-BiLSTM-MA segmentation.
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Evaluating Image Segmentation
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Xie and Wen provide five
examples, three from the
BrainWeb data set, and two
from the MRBrainS data set.
We see that the CatSIM
metric gives, for almost all
noise settings and across all
images, the same ordering of
the methods as the accuracy.
However, the spread of the
results is greater, meaning
that, as before, we get better
discrimination between the
methods using CatSIM than
with pointwise accuracy.

32



Conclusion

• Novel method for comparing binary and multinary images in
two and three dimensions

• Provides results more similar to human perception in ranking
images

• Provides greater discrimination between segmentations than
currently used metrics.

Future work:

• Smooth windowing functions
• Fuzzy class labels
• Different misclassification costs
• Hierarchical class information
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